Monitoring / Diagnostics

MONITORING / VITAL SIGNS
DIAGNOSTIC DEVICES

Prehospital Ultrasound in Trauma: A Review of Current and Potential Future Clinical Applications.

El Zahran T, El Sayed MJ

J Emerg Trauma Shock. 2018 Jan-Mar;11(1):4-9

Ultrasound (US) is an essential tool for evaluating trauma patients in the hospital setting. Many previous in-hospital studies have been extrapolated to out of hospital setting to improve diagnostic accuracy in prehospital and austere environments. This review article presents the role of prehospital US in blunt and penetrating trauma management with emphasis on its current clinical applications, challenges, and future implications of such use.

Compensatory Reserve Index: Performance of A Novel Monitoring Technology to Identify the Bleeding Trauma Patient.

Johnson MC, Alarhayem A, Convertino V, Carter R 3rd, Chung K, Stewart R, Myers J, Dent D, Liao L, Cestero R, Nicholson S, Muir M, Schwacha M, Wampler D, DeRosa M, Eastridge B

Shock. 2018 Mar;49(3):295-300. doi: 10.1097/SHK.0000000000000959.

INTRODUCTION: Hemorrhage is one of the most substantial causes of death after traumatic injury. Standard measures, including systolic blood pressure (SBP), are poor surrogate indicators of physiologic compromise until compensatory mechanisms have been overwhelmed. Compensatory Reserve Index (CRI) is a novel monitoring technology with the ability to assess physiologic reserve. We hypothesized CRI would be a better predictor of physiologic compromise secondary to hemorrhage than traditional vital signs.

METHODS: A prospective observational study of 89 subjects meeting trauma center activation criteria at a single level I trauma center was conducted from October 2015 to February 2016. Data collected included demographics, SBP, heart rate, and requirement for hemorrhage-associated, life-saving intervention (LSI) (i.e., operation or angiography for hemorrhage, local or tourniquet control of external bleeding, and transfusion >2 units PRBC). Receiver-operator characteristic (ROC) curves were formulated and appropriate thresholds were calculated to compare relative value of the metrics for predictive modeling.

RESULTS: For predicting hemorrhage-related LSI, CRI demonstrated a sensitivity of 83% and a negative predictive value (NPV) of 91% as compared with SBP with a sensitivity to detect hemorrhage of 26% (Pā€Š<ā€Š0.05) and an NPV of 78%. ROC curves generated from admission CRI and SBP measures demonstrated values of 0.83 and 0.62, respectively. CRI identified significant hemorrhage requiring potentially life-saving therapy more reliably than SBP (Pā€Š<ā€Š0.05).

CONCLUSION: The CRI device demonstrated superior capacity over systolic blood pressure in predicting the need for posttraumatic hemorrhage intervention in the acute resuscitation phase after injury.

Chinese Military Evaluation of a Portable Near-Infrared Detector of Traumatic Intracranial Hematomas.

Liang CY, Yang Y, Shen CS, Wang HJ, Liu NM, Wang ZW, Zhu FL, Xu RX

Mil Med. 2018 Feb 6. Epub ahead of print

Introduction: Secondary brain injury is the main cause of mortality from traumatic brain injury (TBI). One hallmark of TBI is intracranial hemorrhage, which occurs in 40-50% of severe TBI cases. Early identification of intracranial hematomas in TBI patients allows early surgical evacuation and can reduce the case fatality rate of TBI. As pre-hospital care is the weakest part of Chinese emergency care, there is an urgent need for a capability to detect brain hematomas early. In China, in addition to preventing injuries and diseases in military staff and in enhancing the military armed forces during war, military medicine participates in actions such as emergency public health crises, natural disasters, emerging conflicts, and anti-terrorist campaigns during peacetime. The purpose of this observational study is to evaluate in the Chinese military general hospital the performance of a near-infrared (NIR)-based portable device, developed for US Military, in the detection of traumatic intracranial hematomas. The endpoint of the study was a description of the test characteristics (sensitivity, specificity, and positive and negative predictive values [NPV]) of the portable NIR-based device in identification of hematomas within its detection limits (volume >3.5 mL and depth <2.5 cm) compared with computed tomography (CT) scans as the gold standard.

Materials and Methods: The Infrascanner Model 2000 NIR device (InfraScan, Inc., Philadelphia, PA, USA) was used for hematoma detection in patients sustaining TBI. Data were collected in the People's Liberation Army General Hospital in Beijing using the NIR device at the time of CT scans, which were performed to evaluate suspected TBI. One hundred and twenty seven patients were screened, and 102 patients were included in the per protocol population. Of the 102 patients, 24 were determined by CT scan to have intracranial hemorrhage. The CT scans were read by an independent neuroradiologist who was blinded to the NIR measurements.

Results: The NIR device demonstrated sensitivity of 100% (95% confidence intervals [CI] 82.8-100%) and specificity of 93.6% (95%CI 85-97.6%) in detecting intracranial hematomas larger than 3.5 mL in volume and that were less than 2.5 cm from the surface of the brain. Blood contained within scalp hematomas was found to be a major cause of false-positive results with this technology.

Conclusion: The study showed that the Infrascanner is a suitable portable device in Chinese population for detecting preoperative intracranial hematomas in remote locations, emergency rooms, and intensive care units. It could aid military medics, physicians, and hospital staff, permitting better triage decisions, earlier treatment, and reducing secondary brain injury caused by acute and delayed hematomas.